Special Issue: Update on Biologic Therapy in Pediatric Allergy
Issue 4 - 2025
Biologic Therapies Targeting Type-2 Inflammation in Pediatric Chronic Rhinosinusitis: Evidence, Extrapolation From Adults, and a Pediatric Research Agenda
Abstract
Pediatric chronic rhinosinusitis (CRS), particularly when complicated by nasal polyps (CRSwNP), spans a spectrum of age-dependent endotypes that challenge one-size-fits-all management. Emerging evidence – integrating pathology, multi-omic profiling, and real-world cohorts – indicates that younger children commonly exhibit non-type-2 (non-T2) inflammation driven by adenoidal disease and biofilm ecology, whereas adolescents increasingly manifest T2-high signatures that mirror adult CRSwNP. Within this context, biologic therapies targeting T2 pathways (anti-IL-4Rα, anti-IL-5/IL-5Rα, anti-IgE, anti-TSLP) have demonstrated multidomain benefits in adults and growing pediatric applicability, improving nasal polyp burden, congestion, olfaction, and steroid/surgery use when standard care is insufficient. Safety profiles across pediatric experience in related T2 diseases are generally favorable, with predictable and manageable adverse events; nonetheless, child-specific long-term data remain limited. This review synthesizes the pathophysiology and endotypes in childhood and adolescence, maps biomarker-guided selection, and summarizes evolving regulatory landscapes. Persistent gaps include the scarcity of randomized pediatric trials, incomplete validation of biomarkers and response criteria for children, and the need for cost-effectiveness analyses that reflect school participation and caregiver burden. Overall, biologics represent a meaningful advance for T2-high adolescent CRSwNP, enabling targeted, generally safe, steroid- and surgery-sparing strategies, while underscoring the imperative for dedicated pediatric trials, standardized endpoints, and robust pharmacovigilance to realize their full potential in comprehensive care.
References
- Standyło A, Horoch T, Mielnik-Niedzielska G, et al. Challenges and opportunities in the treatment of chronic rhinosinusitis in children. J Health Policy Outcomes Res 2021;2:27-32. https://doi.org/10.7365/JHPOR.2021.2.4.
- Kennedy AA, Gerber ME. Burden and Health Impact of Pediatric Rhinosinusitis. In: Ramadan HH, Baroody FM, eds. Pediatric Rhinosinusitis. Springer International Publishing, Cham, 2020, pp. 9-15. https://doi.org/10.1007/978-3-030-22891-0_2.
- Lai L, Hopp RJ, Lusk RP. Pediatric Chronic Sinusitis and Asthma: A Review. J Asthma 2006;43:719-725. https://doi.org/10.1080/02770900600620269.
- Torretta S, Guastella C, Ibba T, et al. Surgical Treatment of Paediatric Chronic Rhinosinusitis. J Clin Med 2019;8:684. https://doi.org/10.3390/jcm8050684.
- Davcheva-Chakar M, Kaftandzhieva A, Zafirovska B. Adenoid Vegetations – Reservoir of Bacteria for Chronic Otitis Media with Effusion and Chronic Rhinosinusitis. Pril (Makedon Akad Nauk Umet Odd Med Nauki) 2015;36:71-6. https://doi.org/ 10.1515/prilozi-2015-0080.
- Gitman L, Peña M. Pathogenesis of Pediatric Rhinosinusitis. In: Ramadan HH, Baroody FM, eds. Pediatric Rhinosinusitis. Springer International Publishing, Cham, 2020, pp. 17-40. https://doi.org/10.1007/978-3-030-22891-0_3.
- Petalas K, Goudakos J&, Konstantinou GN. Targeting Epithelium Dysfunction and Impaired Nasal Biofilms to Treat Immunological, Functional, and Structural Abnormalities of Chronic Rhinosinusitis. Int J Mol Sci 2023;24:12379. https://doi.org/10.3390/ijms241512379.
- Belcher R, Virgin F. The Role of the Adenoids in Pediatric Chronic Rhinosinusitis. Med Sci 2019;7:35. https://doi.org/10.3390/medsci7020035.
- April M, Gallant SC. The Role of Adenoids in Pediatric Sinusitis. In: Ramadan HH, Baroody F M, eds. Pediatric Rhinosinusitis. Springer International Publishing, Cham, 2020, pp. 73-83. https://doi.org/10.1007/978-3-030-22891-0_6.
- Lang M, Bereza D, Kulak-Waśniewska M, et al. List 3 authors before et al. The influence of the sinonasal microbiome on the development and management of rhinosinusitis. J Educ Health Sport 2025;77:56769. https://doi.org/10.12775/JEHS.2025.77.56769.
- Naumenko OM, Dieieva YV, Gogunska IV, et al. Association Between Adenoid Hypertrophy and Chronic Rhinosinusitis in Children: A Systematic Review. Clin Prev Med 2025;5:140-154. https://doi.org/10.31612/2616-4868.5.2025.17.
- Tsai M, Wonnaparhown A, Garcia-Lloret MI, et al. Chronic Rhinosinusitis in Pediatric Immunodeficiency. Curr Treat Options Allergy 2020;7:219-232. https://doi.org/10.1007/s40521-019-00230-1.
- Rizzi MD, Kazahaya K. Pediatric chronic rhinosinusitis: when should we operate? Curr Opin Otolaryngol Head Neck Surg 2014;22:27-33. https://doi.org/10.1097/MOO.0000000000000018.
- Gerber ME, Kennedy AA. Adenoidectomy with Balloon Catheter Sinuplasty: A Randomized Trial for Pediatric Rhinosinusitis. Laryngoscope 2018;128:2893-2897. https://doi.org/10.1002/lary.27270.
- Heath J, Hartzell L, Putt C, et al. Chronic Rhinosinusitis in Children: Pathophysiology, Evaluation, and Medical Management. Curr Allergy Asthma Rep 2018;18:37. https://doi.org/10.1007/s11882-018-0792-8.
- Alvarado J, Stolovitzky P. Management of Pediatric Chronic Rhinosinusitis. Curr Treat Options Allergy 2020;7:356-369. https://doi.org/10.1007/s40521-020-00268-6.
- Cazzavillan A, Castelnuovo P, Berlucchi M, et al. Management of chronic rhinosinusitis. Pediatr Allergy Immunol 2012;23(Suppl 22):32-44. https://doi.org/10.1111/j.1399-3038.2012.01322.x
- Quintanilla-Dieck L, Lam DJ. Chronic Rhinosinusitis in Children. Curr Treat Options Peds 2018;4:413-424. https://doi.org/10.1007/s40746-018-0142-z.
- Lowery AS, Virgin FW. Failure of Surgical Treatment in Children with Chronic Rhinosinusitis. In: RamadanHH, Baroody FM, eds. Pediatric Rhinosinusitis. Springer International Publishing, Cham, 2020, pp. 267-275. https://doi.org/10.1007/978-3-030-22891-0_21.
- Sima Y, Zhao Y, Wang X, et al. Precision medicine in chronic rhinosinusitis – using endotype and endotype-driven therapeutic options. Expert Rev Clin Immunol 2023;19:949-958. https://doi.org/ 10.1080/1744666X.2023.2232115.
- Lin T, Zhang Y, Lian D, et al. IL-4/IL-13 Signaling Regulation and Monoclonal Antibody Therapy in Chronic Rhinosinusitis with Nasal Polyps. Int J Biol Sci 2025;10:21-24. https://doi.org/:10.54097/g17g1485.
- Tenero L, Piacentini G. New opportunities with biologic treatments in pediatric allergic and respiratory diseases. Pediatr Allergy Immunol 2022;33 Suppl 27(Suppl 27):8-10. https://doi.org/10.1111/pai.13617.
- Shishodia S, Haloob N, Hopkins C. Antibody-based therapeutics for chronic rhinosinusitis with nasal polyps. Expert Opin Biol Therapy 2024;24:491-502.
- Bachert C, Han JK, Desrosiers M, et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials. Lancet 2019;394:1638-1650. https://doi.org/10.1016/S0140-6736(19)31881-1. Erratum in: Lancet 2019;394:1618. https://doi.org/10.1016/S0140-6736(19)32218-4.
- Desrosiers M, Diamant Z, Castelnuovo P, et al.P; SYNAPSE study investigators. Sustained efficacy of mepolizumab in patients with severe chronic rhinosinusitis with nasal polyps: SYNAPSE 24-week treatment-free follow-up. Int Forum Allergy Rhinol 2024;14:18-31. https://doi.org/10.1002/alr.23219
- Hamilos DL. Drivers of chronic rhinosinusitis: Inflammation versus infection. J Allergy Clin Immunol 2015;136:1454-1459. https://doi.org/10.1016/j.jaci.2015.10.011.
- Mahdavinia M, Grammer LC. Chronic rhinosinusitis and age: is the pathogenesis different? Expert Rev Anti Infect Ther 2013;11:1029-1040. https://doi.org/10.1586/14787210.2013.839380.
- Fokkens WJ, Lund VJ, Hopkins C, et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology 2020;58(Suppl S29):1-464. https://doi.org/10.4193/Rhin20.600.
- Ramsey T, Lai W, Guo E, et al. Clinical trials in rhinosinusitis: Identifying areas for improvement. Laryngoscope 2018;128:1281-1286. https://doi.org/10.1002/lary.26912
- Licari A, Castagnoli R, Marseglia A, et al. Dupilumab to Treat Type 2 Inflammatory Diseases in Children and Adolescents. Paediatr Drugs 2020;22:295-310. https://doi.org/10.1007/s40272-020-00387-2.
- Boiko N, Stagnieva I, Lodochkina O. Chronic Rhinosinusitis with Polyps and Comorbid Asthma: Results of Reslizumab Treatment. SEE J Immunol 2023;6:39-44. 10.3889/seejim.2023.6039.
- Gudis DA, Soler ZM. Update on pediatric sinus surgery: indications and outcomes. Curr Opin Otolaryngol Head Neck Surg 2017;25:486-492. https://doi.org/10.1097/MOO.0000000000000419.
- Oh E, Miller JE, Lee JT. Multidisciplinary Management of Pediatric Chronic Rhinosinusitis with Nasal Polyposis. Curr Treat Options Allergy 2024;11:34-48. Https://doi.org/10.1007/s40521-024-00362-z.
- Rahavi-Ezabadi S, Zhou S, Lee SE, et al. Biologic Therapy in Pediatric Chronic Rhinosinusitis: A Systematic Review. Otolaryngol Head Neck Surg 2024;171:35-44. https://doi.org/10.1002/ohn.717.
- Patruno C, Nocerino M, Maffei M, et al. Two is better than one: Effectiveness of dupilumab on atopic dermatitis and chronic rhinosinusitis with nasal polyps in an adolescent. Dermatol Ther 2022;35:e15857. https://doi.org/10.1111/dth.15857.
- Di Cicco ME, Bizzoco F, Morelli E, et al. Nasal Polyps in Children: The Early Origins of a Challenging Adulthood Condition. Children (Basel) 2021;8:997. https://doi.org/ 10.3390/children8110997.
- Meier EC, Schmid-Grendelmeier P, Steiner UC, et al. Real-Life Experience of Monoclonal Antibody Treatments in Chronic Rhinosinusitis with Nasal Polyposis. Int Arch Allergy Immunol 2021;182:736-743. https://doi.org/10.1159/000514262.
- Habenbacher M, Moser U, Abaira A, et al. Investigation of Blood Count-Based Inflammatory Biomarkers as Predictors of Response to Dupilumab Treatment in Patients with Chronic Rhinosinusitis with Nasal Polyps. Pharmaceutics 2024;16:1370. https://doi.org/10.3390/pharmaceutics16111370.
- Niehues T, Özgür TT. The Efficacy and Evidence-Based Use of Biologics in Children and Adolescents. Dtsch Arztebl Int 2019;116:703-710. https://doi.org/10.3238/arztebl.2019.0703.
- Makary CA, Azar A, Gudis D, et al. Evaluation and treatment of rhinosinusitis with primary antibody deficiency in children: Evidence-based review with recommendations. Int Forum Allergy Rhinol 2024;14:1776-1801. https://doi.org/10.1002/alr.23468.
- Kato A, Schleimer RP, Bleier BS. Mechanisms and pathogenesis of chronic rhinosinusitis. J Allergy Clin Immunol 2022;149:1491-1503. https://doi.org/10.1016/j.jaci.2022.02.016.
- Sitzia E, Santarsiero S, Marini G, et alAG. Endotypes of Nasal Polyps in Children: A Multidisciplinary Approach. J Pers Med 2023;13:707. https://doi.org/10.3390/jpm13050707.
- Darougar S, Hematyar M, Savoji PB. A mini-update on chronic rhinosinusitis. Explor Asthma Allergy 2024;2:473-484. https://doi.org/10.37349/eaa.2024.00059.
- Hopp RJ. Pediatric Chronic Rhinosinusitis: Unmet Needs. Sinusitis 2020;4:2-7. https://doi.org/10.3390/sinusitis4010002.
- Shin JM, Yang HW, Park JH, et al. Role of Nasal Fibroblasts in Airway Remodeling of Chronic Rhinosinusitis: The Modulating Functions Reexamined. Int J Mol Sci 2023;24:4017. https://doi.org/10.3390/ijms24044017
- Bugari RA, Başchir AS, Turcin LA, et al. Adenoidal bacterial biofilm in pediatric rhinosinusitis. Rom J Morphol Embryol 2021;62:481-489. https://doi.org/10.47162/RJME.62.2.14
- Sokolovs-Karijs O, Brīvība M, Saksis R, et al. Comparing the Microbiome of the Adenoids in Children with Secretory Otitis Media and Children without Middle Ear Effusion. Microorganisms 2024;12:1523. https://doi.org/10.3390/microorganisms12081523
- Zuliani G, Carron M, Gurrola J, et al. Identification of adenoid biofilms in chronic rhinosinusitis. Int J Pediatr Otorhinolaryngol 2006;70:1613-1617. https://doi.org/10.1016/j.ijporl.2006.05.002.
- Stevens WW, Kato A. Group 2 innate lymphoid cells in nasal polyposis. Ann Allergy Asthma Immunol 2021;126:110-117. https://doi.org/10.1016/j.anai.2020.08.001.
- Bachert C, Hicks A, Gane S, et al. The interleukin-4/interleukin-13 pathway in type 2 inflammation in chronic rhinosinusitis with nasal polyps. Front Immunol 2024;15:1356298. https://doi.org/10.3389/fimmu.2024.1356298.
- Luo C, Zhu Y, Zhang S, et al. Increased SERPINB2 potentiates 15LO1 expression via STAT6 signalling in epithelial cells in eosinophilic chronic rhinosinusitis with nasal polyps. Clin Exp Allergy 2024;54:412-424. https://doi.org/10.1111/cea.14484.
- Chen J, Chen S, Gong G, et al. Inhibition of IL-4/STAT6/IRF4 signaling reduces the epithelial-mesenchymal transition in eosinophilic chronic rhinosinusitis with nasal polyps. Int Immunopharmacol 2023;121:110554. https://doi.org/10.1016/j.intimp.2023.110554.
- Sohail A, Hacker J, Ryan T, et al. Nasal polyp antibody-secreting cells display proliferation signature in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2024;153:527-532. https://doi.org/10.1016/j.jaci.2023.10.011
- Corrado A, Ramonell RP, Woodruff MC, et al. Extrafollicular IgD+ B cells generate IgE antibody secreting cells in the nasal mucosa. Mucosal Immunol 2021;14:1144-1159. https://doi.org/10.1038/s41385-021-00410-w.
- Yang C, Guo L, Wang Y, et al. The advance on pathophysiological mechanisms of type 2 chronic rhinosinusitis with nasal polyposis. Front Allergy 2025;6:1599797. https://doi.org/10.3389/falgy.2025.1599797. Erratum in: Front Allergy 2025;6:1679519. https://doi.org/10.3389/falgy.2025.1679519.
- Marriott H, Duchesne M, Moitra S, et al. Upper Airway Alarmin Cytokine Expression in Asthma of Different Severities. J Clin Med 2024;13:3721. https://doi.org/10.3390/jcm13133721
- Stanbery AG, Shuchi Smita, Jakob von Moltke, et al. TSLP, IL-33, and IL-25: Not just for allergy and helminth infection. J Allergy Clin Immunol 2022;150:1302-1313. https://doi.org/10.1016/j.jaci.2022.07.003.
- Abuduruk SH, Sabb Gul BK, AlMasoudi SM, et al. Factors Contributing to the Recurrence of Chronic Rhinosinusitis with Nasal Polyps After Endoscopic Sinus Surgery: A Systematic Review. Cureus 2024;16:e67910. https://doi.org/10.7759/cureus.67910.
- Chen YS, Feng CY, Su SH, et al. Recurrence of Chronic Rhinosinusitis with Nasal Polyps After Surgery: Risk Factors, Predictive Models, and Treatment Approaches with a Focus on Western and Asian Differences. Medicina (Kaunas) 2025;61:1620. https://doi.org/10.3390/medicina61091620.
- Kratchmarov R, Dharia T, Buchheit K. Clinical efficacy and mechanisms of biologics for chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2025;155:1401-1410. https://doi.org/10.1016/j.jaci.2025.03.011.
- Striz I, Golebski K, Strizova Z, et al. New insights into the pathophysiology and therapeutic targets of asthma and comorbid chronic rhinosinusitis with or without nasal polyposis. Clin Sci (Lond) 2023;137:727-753. https://doi.org/10.1042/CS20190281. Erratum in: Clin Sci (Lond) 2023;137:1209. https://doi.org/10.1042/CS-2019-0281C_COR.
- Xiong P, Chen J, Zhang Y, et al. Predictive modeling for eosinophilic chronic rhinosinusitis: Nomogram and four machine learning approaches. iScience 2024;27:108928. https://doi.org/10.1016/j.isci.2024.108928.
- Cheng F, Wang Y, Gao Y, et al. Current Understanding of Epithelial-Derived Alarmins in Chronic Rhinosinusitis with Nasal Polyps. Clin Rev Allergy Immunol 2025;68:59. https://doi.org/10.1007/s12016-025-09073-y.
- Deng Z, Fan T, Xiao C, et al. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024;9:61. https://doi.org/10.1038/s41392-024-01764-w.
- Psaltis AJ, Mackenzie BW, Cope EK, et al. Unraveling the role of the microbiome in chronic rhinosinusitis. J Allergy Clin Immunol 2022;149:1513-1521. https://doi.org/10.1016/j.jaci.2022.02.022.
- Stubbendieck RM, Hurst JH, Kelly MS. Dolosigranulum pigrum: A promising nasal probiotic candidate. PLoS Pathog 2024;20:e1011955. https://doi.org/10.1371/journal.ppat.1011955.
- Sedaghat AR, Campbell RG, Douglas RG, et al. Outcome measures for chronic rhinosinusitis with nasal polyps. Rhinology 2024;62:1-37. https://doi.org/10.4193/Rhin24.090.
- Lee KI, Ryu G, Yoo SH, et al.; Korean Rhinologic Society. Biologics for Chronic Rhinosinusitis with Nasal Polyps: Current Status and Clinical Considerations in Korea. J Rhinol 2025;32:1-9. https://doi.org/10.18787/jr.2025.00002.
- Latek M, Lacwik P, Molinska K, et al, Seweryn M, Kuna P, Palczynski C, Majak P. Effect of an Intranasal Corticosteroid on Quality of Life and Local Microbiome in Young Children with Chronic Rhinosinusitis: A Randomized Clinical Trial. JAMA Pediatr 2023;177:345-352. https://doi.org/10.1001/jamapediatrics.2022.6172.
- AlTheyab F, Alkhodair A, Albdah A, et al. The efficacy and safety of intra-nasal corticosteroid spray in pediatric: Systematic review. Am J Otolaryngol 2024;45:104355. https://doi.org/10.1016/j.amjoto.2024.104355.
- Norelli F, Schiappoli M, Senna G, et al. Adherence to Intranasal Steroids in Chronic Rhinosinusitis with Nasal Polyposis Prior to and during Biologic Therapy: A Neglected Matter. J Clin Med 2024;13:1066. https://doi.org/10.3390/jcm13041066.
- Ramadan HH, Tiu J. Failures of adenoidectomy for chronic rhinosinusitis in children: for whom and when do they fail? Laryngoscope 2007;117:1080-3. https://doi.org/10.1097/MLG.0b013e31804154b1.
- Zhang W, Tang L, Chen X, et al. Changes in Pre- and Post-adenoidectomy Bacterial Profile in Children with Chronic Rhinosinusitis. Ear Nose Throat J 2023;102:780-786. https://doi.org/10.1177/01455613221135647.
- Purrinos JA, Younis R. Pediatric endoscopic sinus surgery: Revisited 35 years later. Am J Otolaryngol 2025;46:104567. https://doi.org/10.1016/j.amjoto.2024.104567.
- Fadel MA, Ramaswamy US. Evaluation of balloon sinuplasty for the treatment of pediatric chronic rhinosinusitis. Curr Opin Otolaryngol Head Neck Surg 2024;32:424-427. https://doi.org/10.1097/MOO.0000000000001016.
- Mawkili AA, Alghazi JH, Alqahtani AM, et al. The Efficacy and Safety of Intranasal Corticosteroids in Chronic Rhinosinusitis: A Systematic Review. Cureus 2025;17:e87674. https://doi.org/10.7759/cureus.87674.
- Aldajani A, Alroqi A, Alrashidi A, et al. Outcomes of Endoscopic Sinus Surgery for Chronic Rhinosinusitis with Nasal Polyposis and Risk Factors of Recurrence in a Tertiary Care Teaching Hospital. Ther Adv Allergy Rhinol 2024;15:27534030241274764. https://doi.org/10.1177/27534030241274764.
- Ricciardolo FLM, Bertolini F, Carriero V. The Role of Dupilumab in Severe Asthma. Biomedicines 2021;9:1096. https://doi.org/10.3390/biomedicines9091096.
- Bakker DS, van der Wal MM, Heeb LEM, et al. Early and Long-Term Effects of Dupilumab Treatment on Circulating T-Cell Functions in Patients with Moderate-to-Severe Atopic Dermatitis. J Invest Dermatol 2021;141:1943-1953.e13. https://doi.org/10.1016/j.jid.2021.01.022.
- Kim Y-S. Comparative Efficacy and Safety of Tralokinumab and Dupilumab in Moderate-to-Severe Atopic Dermatitis: A Narrative Review. J Clin Med 2025;14:4960. https://doi.org/10.3390/jcm14144960
- Torres T, Mendes-Bastos P, Cruz MJ, et al. Interleukin-4 and Atopic Dermatitis: Why Does it Matter? A Narrative Review. Dermatol Ther (Heidelb) 2025;15:579-597. https://doi.org/10.1007/s13555-025-01352-y.
- Rodriguez-Iglesias M, Calvo-Henríquez C, Martin-Jimenez D, et al. Effect of Dupilumab in CRSwNP Sinonasal Outcomes from Real Life Studies: A Systematic Review with Meta-analysis. Curr Allergy Asthma Rep 2025;25:13. https://doi.org/10.1007/s11882-025-01192-y.
- Pinto JM, Fillbrunn M, Martins B, et al. Real-world treatment patterns in patients with chronic rhinosinusitis with nasal polyps who initiated dupilumab: A US claims analysis. J Allergy Clin Immunol Glob 2025;4:100557. https://doi.org/10.1016/j.jacig.2025.100557.
- Siddiqui S, Bachert C, Chaker AM, et al. AROMA: real-world global registry of dupilumab for chronic rhinosinusitis with nasal polyps. ERJ Open Res 2022;8:00085-2022. https://doi.org/10.1183/23120541.00085-2022.
- Habenbacher M, Moser U, Abaira A, et al. Clinical effectiveness of dupilumab in CRSwNP: unaffected by baseline nasal polyp size in real-world settings. Eur Arch Otorhinolaryngol 2025;282:3329-3334. https://doi.org/10.1007/s00405-025-09275-2.
- De Corso E, Canonica GW, Heffler E, et al. Dupilumab versus omalizumab in patients with chronic rhinosinusitis with nasal polyps and coexisting asthma (EVEREST): a multicentre, randomised, double-blind, head-to-head phase 4 trial. Lancet Respir Med 2025;13:1067-1077. https://doi.org/10.1016/S2213-2600(25)00287-5.
- FDA Approves Dupixent® (dupilumab) for Chronic Rhinosinusitis with Nasal Polyposis | Regeneron Pharmaceuticals Inc. https://investor.regeneron.com/news-releases/news-release-details/fda-approves-dupixentr-dupilumab-chronic-rhinosinusitis-nasal/. Accessed on: September 2025.
- Dupixent® (dupilumab) Approved in the U.S. as First and Only Treatment for Adolescents with Chronic Rhinosinusitis with Nasal Polyps (CRSwNP) | Regeneron Pharmaceuticals Inc. https://investor.regeneron.com/news-releases/news-release-details/dupixentr-dupilumab-approved-us-first-and-only-treatment/. Accessed on: September 2025.
- Dupixent - European Medicines Agency (EMA). https://www.ema.europa.eu/en/medicines/human/EPAR/dupixent (2018). Accessed on: September 2025.
- Dupixent® (dupilumab) Now Approved in European Union for Severe Chronic Rhinosinusitis with Nasal Polyposis | Regeneron Pharmaceuticals Inc. https://newsroom.regeneron.com/news-releases/news-release-details/dupixentr-dupilumab-now-approved-european-union-severe-chronic/. Accessed on: September 2025.
- Dupixent - European Medicines Agency (EMA). https://www.ema.europa.eu/en/medicines/human/EPAR/dupixent (2018). Accessed on: September 2025.
- Gothi D, Narasimhan R, Guleria R, et al. Improving patient outcomes: Mepolizumab's impact in IL-5-mediated diseases. Lung India 2025;42:231-244. https://doi.org/10.4103/lungindia.lungindia_442_24.
- Antosz K, Batko J, Błażejewska M, et al. Insight into IL-5 as a Potential Target for the Treatment of Allergic Diseases. Biomedicines 2024;12:1531. https://doi.org/10.3390/biomedicines12071531.
- Jackson DJ, Wechsler ME, Brusselle G, et al. Targeting the IL-5 pathway in eosinophilic asthma: A comparison of anti-IL-5 versus anti-IL-5 receptor agents. Allergy 2024;79:2943-2952. https://doi.org/10.1111/all.16346. Erratum in: Allergy 2025;80:1557. https://doi.org/10.1111/all.16541.
- Han JK, Bachert C, Fokkens W, et al.; SYNAPSE study investigators. Mepolizumab for chronic rhinosinusitis with nasal polyps (SYNAPSE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir Med 2021;9:1141-1153. https://doi.org/10.1016/S2213-2600(21)00097-7.
- Fokkens WJ, Mullol J, Kennedy D, et al. Mepolizumab for chronic rhinosinusitis with nasal polyps (SYNAPSE): In-depth sinus surgery analysis. Allergy 2023;78:812-821. https://doi.org/10.1111/all.15434.
- GSK announces FDA approval for Nucala (mepolizumab) for use in adults with chronic rhinosinusitis with nasal polyps. 2021. https://www.gsk.com/en-gb/media/press-releases/gsk-announces-fda-approval-for-nucala-mepolizumab-for-use-in-adults-with-chronic-rhinosinusitis-with-nasal-polyps/. Accessed on: September 2025.
- Nucala - European Medicines Agency (EMA). 2018. https://www.ema.europa.eu/en/medicines/human/EPAR/nucala. Accessed on: September 2025.
- Dagher R, Kumar V, Copenhaver AM, et al. Novel mechanisms of action contributing to benralizumab's potent anti-eosinophilic activity. Eur Respir J 2022;59:2004306. https://doi.org/10.1183/13993003.04306-2020.
- Bergantini L, d'Alessandro M, Pianigiani T, et al. Benralizumab affects NK cell maturation and proliferation in severe asthmatic patients. Clin Immunol 2023;253:109680. https://doi.org/10.1016/j.clim.2023.109680.
- Koga Y, Aoki-Saito H, Kamide Y, et al. Perspectives on the Efficacy of Benralizumab for Treatment of Eosinophilic Granulomatosis with Polyangiitis. Front Pharmacol 2022;13:865318. https://doi.org/10.3389/fphar.2022.865318.
- Nagano T. Robust evidence of the rapid efficacy of benralizumab. J Thorac Dis 2025;17:4376-4378.
- Wang Q, Sun Q, Chen Q, et al. Efficacy and Safety of Anti-Interleukin-5 Therapies in Chronic Rhinosinusitis with Nasal Polyps: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int Arch Allergy Immunol 2022;183:732-743. https://doi.org/10.1159/000521859.
- Bachert C, Han JK, Desrosiers MY, et al. Efficacy and safety of benralizumab in chronic rhinosinusitis with nasal polyps: A randomized, placebo-controlled trial. J Allergy Clin Immunol 2022;149:1309-1317.e12. https://doi.org/10.1016/j.jaci.2021.08.030.
- Emson C, Han JK, Hopkins C, et al. Pharmacokinetics/pharmacodynamics of benralizumab in chronic rhinosinusitis with nasal polyps: Phase III, randomized, placebo-controlled OSTRO trial. Br J Clin Pharmacol 2024;90:1952-1963. https://doi.org/10.1111/bcp.16087.
- Domingo C, Monserrate DR, Sogo A, et al. The Incredible Adventure of Omalizumab. Int J Mol Sci 2024;25:3056. https://doi.org/10.3390/ijms25053056.
- Yang A, Gu C, Upchurch K, et al. Omalizumab is ineffective in regulating proasthmatic serum cytokine and chemokine levels in nonresponders with high BMI. J Allergy Clin Immunol Glob 2025;4:100462. https://doi.org/10.1016/j.jacig.2025.100462.
- Gevaert P, Omachi TA, Corren J, et al. Efficacy and safety of omalizumab in nasal polyposis: 2 randomized phase 3 trials. J Allergy Clin Immunol 2020;146:595-605. https://doi.org/10.1016/j.jaci.2020.05.032. Erratum in: J Allergy Clin Immunol 2021;147:416. https://doi.org/10.1016/j.jaci.2020.11.003.
- Noeiaghdam R, Esmaeilzadeh H, Faramarzi M, et al. Omalizumab Efficacy in Chronic Rhinosinusitis Patients with Recurrent Nasal Polyps: An open-label, single-center, randomized, controlled study. Ann Otol Rhinol Laryngol 2025;134:692-702. https://doi.org/10.1177/00034894251344426.
- Drugs@FDA: FDA-Approved Drugs. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=761399. Accessed on: September 2025.
- Xolair - European Medicines Agency (EMA). 2018. https://www.ema.europa.eu/en/medicines/human/EPAR/xolair. Accessed on: September 2025.
- Ebina-Shibuya R, Leonard WJ. Role of thymic stromal lymphopoietin in allergy and beyond. Nat Rev Immunol 2023;23:24-37. https://doi.org/10.1038/s41577-022-00735-y.
- Smolinska S, Antolín-Amérigo D, Popescu F-D, et al. Thymic Stromal Lymphopoietin (TSLP), Its Isoforms and the Interplay with the Epithelium in Allergy and Asthma. Int J Mol Sci 2023;24:12725. https://doi.org/10.3390/ijms241612725.
- Bagnasco D, De Ferrari L, Bondi B, et al. Thymic Stromal Lymphopoietin and Tezepelumab in Airway Diseases: From Physiological Role to Target Therapy. Int J Mol Sci 2024;25:5972. https://doi.org/10.3390/ijms25115972.
- Klironomou A, Papaiakovou G, Bakakos A, et al. Tezepelumab: a promising therapy for severe uncontrolled asthma. Explor Asthma Allergy 2024;2:485-501. https://doi.org/10.37349/eaa.2024.00060
- Priessnitz J, Jung J, Han JK, et al. Evaluating the efficacy and safety of tezepelumab in the treatment of chronic rhinosinusitis with nasal polyps. Immunotherapy 2025;17:1-10. https://doi.org/10.1080/1750743X.2025.2567844.
- Lipworth BJ, Han JK, Desrosiers M, et al.; WAYPOINT Study Investigators. Tezepelumab in Adults with Severe Chronic Rhinosinusitis with Nasal Polyps. N Engl J Med 2025;392:1178-1188. https://doi.org/10.1056/NEJMoa2414482.
- Tezepelumab Reduces Nasal Polyp Severity and Surgery. https://www.aaaai.org/about/news/news/2025/nasal-polyp?utm_source=chatgpt.com. Accessed on: September 2025.
- TEZSPIRE approved in the US for chronic rhinosinusitis with nasal polyps. 2025. https://www.astrazeneca.com/content/az-us/media/press-releases/2025/TEZSPIRE-approved-in-the-US-for-chronic-rhinosinusitis-with-nasal-polyps.html. Accessed on: September 2025.
- Tezspire approved in the EU for chronic rhinosinusitis with nasal polyps. 2025. https://www.astrazeneca.com/content/astraz/media-centre/press-releases/2025/tezspire-approved-in-eu-for-crswnp.html. Accessed on :September 2025.
- Gevaert P, Desrosiers M, Cornet M, et al.; ANCHOR-1 and ANCHOR-2 trial investigators. Efficacy and safety of twice per year depemokimab in chronic rhinosinusitis with nasal polyps (ANCHOR-1 and ANCHOR-2): phase 3, randomised, double-blind, parallel trials. Lancet 2025;405:911-926. https://doi.org/10.1016/S0140-6736(25)00197-7. Erratum in: Lancet 2025;406:2630. https://doi.org/10.1016/S0140-6736(25)02429-8.
- Sanofi. A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group, 52-Week Phase 3 Trial to Investigate the Efficacy, Safety, and Tolerability of Itepekimab in Adult Participants with Inadequately-Controlled Chronic Rhinosinusitis with Nasal Polyps. 2025. https://clinicaltrials.gov/study/NCT06834347. Accessed on: September 2025.
- Eli Lilly and Company. A Multicentre, Randomized, Double-Blind, Placebo-Controlled, Parallel Group Phase 3 Efficacy and Safety Study of Lebrikizumab/ LY3650150 in Adults with Chronic Rhinosinusitis with Nasal Polyps on a Background Therapy with Intranasal Corticosteroids. 2025. https://clinicaltrials.gov/study/NCT06338995. Accessed on :September 2025
- Keymed Biosciences Co. Ltd. A Randomized, Double-Blind, Placebo-Controlled Phase III Clinical Study to Evaluate the Efficacy and Safety of CM310 in Patients with Chronic Rhinosinusitis with Nasal Polyposis. 2024. https://clinicaltrials.gov/study/NCT05436275. Accessed on: September 2025.
- Shen S, Yan B, Wang M, et al.; CROWNS-2 Study Investigators. Stapokibart for Severe Uncontrolled Chronic Rhinosinusitis with Nasal Polyps: The CROWNS-2 Randomized Clinical Trial. JAMA 2025;334:962-972. https://doi.org/10.1001/jama.2025.12515
- Zheng M, Wu D, Piao Y, et al. Efficacy and safety of GR1802 in uncontrolled chronic rhinosinusitis with nasal polyps: Placebo-controlled phase 2 trial. J Allergy Clin Immunol 2025;155:1575-1583. https://doi.org/10.1016/j.jaci.2025.01.034.
- Kelsen SG, Agache IO, Soong W, et al. Astegolimab (anti-ST2) efficacy and safety in adults with severe asthma: A randomized clinical trial. J Allergy Clin Immunol 2021;148:790-798. https://doi.org/10.1016/j.jaci.2021.03.044.
- Zhang W, Cheung D, Fong A, et al. Safety, Pharmacokinetics, and Immunogenicity of Astegolimab, an Anti-ST2 Monoclonal Antibody, in Randomized, Phase I Clinical Studies. Clin Transl Sci 2025;18:e70338. https://doi.org/10.1111/cts.70338.
- Snidvongs K, Sangubol M, Poachanukoon O. Pediatric Versus Adult Chronic Rhinosinusitis. Curr Allergy Asthma Rep 2020;20:29. https://doi.org/10.1007/s11882-020-00924-6.
- Khatri SB, Iaccarino JM, Barochia A, et al.; American Thoracic Society Assembly on Allergy, Immunology, and Inflammation. Use of Fractional Exhaled Nitric Oxide to Guide the Treatment of Asthma: An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med 2021;204:e97-e109. https://doi.org/10.1164/rccm.202109-2093ST.
- De Corso E, Baroni S, Settimi S, et al. Correlation between inflammatory biomarkers and disease control in chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol 2024;14:1195-1205. https://doi.org/10.1002/alr.23319.
- De Corso E, Pipolo C, Caminati M, et al. Multidisciplinary Decision-Making-ITAlian Consensus After Two Years of Real Practice on the Management of Severe Uncontrolled CRSwNP by Biologics (ITACA Study). Curr Allergy Asthma Rep 2024;24:143-154. https://doi.org/10.1007/s11882-024-01135-z.
- De Corso E, Bilò MB, Matucci A, et al. Personalized Management of Patients with Chronic Rhinosinusitis with Nasal Polyps in Clinical Practice: A Multidisciplinary Consensus Statement. J Pers Med 2022;12:846. https://doi.org/10.3390/jpm12050846.
- Bachert C, Maurer M, Palomares O, et al. What is the contribution of IgE to nasal polyposis? J Allergy Clin Immunol 2021;147:1997-2008. https://doi.org/10.1016/j.jaci.2021.03.016.
- Licari A, Castagnoli R, Brambilla I, et al. Biomarkers of immunotherapy response in patients with allergic rhinitis. Expert Rev Clin Immunol 2018;14:657-663. https://doi.org/10.1080/1744666X.2018.1504679.
- Kharitonov SA, Rajakulasingam K, O’Connor B, et al. Nasal nitric oxide is increased in patients with asthma and allergic rhinitis and may be modulated by nasal glucocorticoids. J Allergy Clin Immunol 1997;99:58-64. https://doi.org/10.1016/s0091-6749(97)70301-4.
- Rimmer J, Hellings P, Lund VJ, et al. European position paper on diagnostic tools in rhinology. Rhinology 2019;57(Suppl S28):1-41. https://doi.org/10.4193/Rhin19.410.
- Brindisi G, Gori A, Anania C, et al. Subcutaneous Immunotherapy (SCIT) with the New Polymerized Molecular Allergoid Alt a1: A Pilot Study in Children with Allergic Rhinitis Sensitized to Alternaria Alternata. J Clin Med 2023;12:4327. https://doi.org/10.3390/jcm12134327.
- Brindisi G, De Vittori V, De Nola R, et al. The Role of Nasal Nitric Oxide and Anterior Active Rhinomanometry in the Diagnosis of Allergic Rhinitis and Asthma: A Message for Pediatric Clinical Practice. J Asthma Allergy 2021;14:265-274. https://doi.org/10.2147/JAA.S275692.
- Brindisi G, Gori A, Anania C, et al. Polymerized Molecular Allergoid Alt a1: Effective SCIT in Pediatric Asthma Patients. J Clin Med 2025;14:1528. https://doi.org/10.3390/jcm14051528.
- Bachert C, Khan AH, Lee SE, et al. Prevalence of type 2 inflammatory signatures and efficacy of dupilumab in patients with chronic rhinosinusitis with nasal polyps from two phase 3 clinical trials: SINUS-24 and SINUS-52. Int Forum Allergy Rhinol 2024;14:668-678. https://doi.org/10.1002/alr.23249.
- Li D, Guo S, Cui S, et al. Development and validation of a clinical risk prediction model for chronic sinusitis with nasal polyps: a retrospective analysis. Eur Arch Otorhinolaryngol 2025;282:4109-4122. https://doi.org/10.1007/s00405-025-09557-9.
- Chen Y, Wang J, Zhang Y, et al. Clustering CRSwNP Patients for Predicting Uncontrolled Outcomes Based on Clinical Features. Allergy Asthma Immunol Res 2025;17:628-639. https://doi.org/10.4168/aair.2025.17.5.628.
- Qi L, Feng X. Precision endotyping and management of type 2 chronic rhinosinusitis with nasal polyps: Integrating noninvasive bioinformatics profiling with machine learning. Ann Allergy Asthma Immunol 2025;135:131-132. https://doi.org/10.1016/j.anai.2025.05.013.
Downloads
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright
Copyright (c) 2026 Italian Journal of Pediatric Allergy and Immunology
How to Cite
- Abstract viewed - 50 times
- pdf downloaded - 5 times
